Caffeine-induced uncoupling of cerebral blood flow and oxygen metabolism: A calibrated BOLD fMRI study

نویسندگان

  • Joanna E. Perthen
  • Amy E. Lansing
  • Joy Liau
  • Thomas T. Liu
  • Richard B. Buxton
چکیده

Although functional MRI (fMRI) based on blood oxygenation level-dependent (BOLD) signal changes is a sensitive tool for mapping brain activation, quantitative studies of the physiological effects of pharmacological agents using fMRI alone are difficult to interpret due to the complexities inherent in the BOLD response. Hypercapnia-calibrated BOLD methodology is potentially a more powerful physiological probe of brain function, providing measures of the changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). In this study, we implemented a quantitative R(2)* approach for assessing the BOLD response to improve the stability of repeated measurements, in combination with the calibrated BOLD method, to examine the CBF and CMRO(2) responses to caffeine ingestion. Ten regular caffeine consumers were imaged before and after a 200-mg caffeine dose. A dual-echo arterial spin labeling technique was used to measure CBF and BOLD responses to visual stimulation, caffeine consumption and mild hypercapnia. For a region of interest defined by CBF activation to the visual stimulus, the results were: hypercapnia increased CBF (+46.6%, +/-11.3, mean and standard error), visual stimulation increased both CBF (+47.9%, +/-2.9) and CMRO(2) (+20.7%, +/-1.4), and caffeine decreased CBF (-34.5%, +/-2.6) with a non-significant change in CMRO(2) (+5.2%, +/-6.4). The coupling between CBF and CMRO(2) was significantly different in response to visual stimulation compared to caffeine consumption. A calibrated BOLD methodology using R(2) * is a promising approach for evaluating CBF and CMRO(2) changes in response to pharmacological interventions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caffeine's effects on cerebrovascular reactivity and coupling between cerebral blood flow and oxygen metabolism

The blood-oxygenation-level-dependent (BOLD) signal is dependent on multiple physiological factors such as cerebral blood flow (CBF), local oxygen metabolism (CMRO(2)) and cerebral blood volume (CBV). Since caffeine affects both CBF and neural activity, its effects on BOLD remain controversial. The calibrated BOLD approach is an excellent tool to study caffeine because it combines CBF and BOLD ...

متن کامل

A New Functional MRI Approach for Investigating Modulations of Brain Oxygen Metabolism

Functional MRI (fMRI) using the blood oxygenation level dependent (BOLD) signal is a common technique in the study of brain function. The BOLD signal is sensitive to the complex interaction of physiological changes including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral oxygen metabolism (CMRO2). A primary goal of quantitative fMRI methods is to combine BOLD imaging with ...

متن کامل

Calibrated functional MRI: mapping the dynamics of oxidative metabolism.

MRI was extended to the measurement of changes in oxidative metabolism in the normal human during functionally induced changes in cellular activity. A noninvasive MRI method that is model-independent calibrates the blood oxygen level dependent (BOLD) signal of functional MRI (fMRI) against perfusion-sensitive MRI, using carbon dioxide breathing as a physiological reference standard. This calibr...

متن کامل

On the use of caffeine as a contrast booster for BOLD fMRI studies.

This study explored the possible use of caffeine as an agent to improve the BOLD (blood oxygen level-dependent) signal response in fMRI. Previous research has demonstrated that caffeine has the ability to reset the level of coupling between blood flow and neuronal activity. In the present study, it has been shown that caffeine causes a decrease in cerebral perfusion by as much as 13.2% without ...

متن کامل

Negative dip in BOLD fMRI is caused by blood flow--oxygen consumption uncoupling in humans.

The sensitivity of MRI for local changes in the deoxyhemoglobin concentration is the basis of the blood oxygen level dependent (BOLD) effect. Time-resolved fMRI studies during visual activation show an early signal intensity (SI) decrease indicating a short lasting uncoupling of oxygen consumption and cerebral blood flow (CBF) before a SI increase due to the overcompensating hemodynamic respons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2008